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Reaction dynamics controlled by enhanced diffusion
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The reaction schemes A +B —inert and 4 + 4 — A, controlled by enhanced diffusion, are investigat-
ed. The participating particles are assumed to perform Lévy walks with Lévy exponents 1 <y <2. Both
theoretical expressions and numerical results are presented. Reaction behaviors are observed which in-
dicate mixing properties. When compared with reactions controlled by Brownian motion we obtain fast-
er processes, new kinetic patterns, and, more importantly, lower, y-dependent, critical dimensions for
the mean-field behavior. The latter suggests erosion of the segregation phenomenon.

PACS number(s): 05.40.+j, 82.20.—w, 02.50.—r

Models of diffusion-controlled reactions 4 +B — in-
ert, A+ A —inert, and 4 + A4 — A, with and without
particle sources, have been under extensive investigations
in recent years with emphasis on the role of density fluc-
tuations that lead to deviations from the mean-field rate-
equations behavior [1-12]. These reaction models are
relevant to problems such as exciton-exciton annihilation
[13] and diffusion-reaction polymerization [10], and have
intimate relationship to some spin models [7] and to the
Edwards-Wilkinson interface growth model [14-16].

The various reaction schemes have been studied by
direct random-walk techniques [4], by analysis of the cor-
responding Langevin equation (A4 +B processes)
[9,16,17], and by more specific, mainly one-dimensional
methods (A4 + A processes) [7,10,11]. Both regular and
disordered, fractal and amorphous, underlying
geometries have been assumed, where the latter show a
slowing down of the reaction processes. Pronounced
dependence on dimensionality has been observed.

Much attention has been recently drawn to systems
that display enhanced diffusion, where the mean-square
displacement of a particle grows superlinearly in time
[18-24]. Such enhancement has been experimentally ob-
served in a two-dimensional flow in a rotating annulus
[25] and in self-diffusion studies in polymerlike breakable
micelles [26]. In these cases, as well as in a broad range
of numerical studies of dynamical systems, the enhance-
ment has been attributed to Lévy walks, which generalize
the simple Brownian motion by extending the central-
limit theorem [22,23,27,28].

In this paper, we report on some results of diffusion-
controlled reactions under diffusional enhancement on
many scales. We introduce Lévy statistics into reaction
dynamics, a step which enables us to generalize previous-
ly investigated reaction-diffusion schemes by including
motional enhancement, and to demonstrate the continu-
ous approach toward the mean-field results. In this
sense, the Lévy-walk enhanced reactions present models
of simple mixing processes and broadens the scope of ap-
plicability of the above mentioned reactions. We show
that imposing the Lévy-walk aspect accelerates the reac-
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tion process, leads to different reaction patterns, and
lowers the critical dimension at which the mean-field
behavior sets in.

We will focus on the following reaction schemes: (a)
A +B —inert, with and without sources. This scheme
requires, as we will see, the generalization of the
Langevin equations to Lévy processes. (b) A + 4 —inert
and A + A— A, with and without a source, for which
one has to generalize the analysis in terms of the two-
body correlation functions [11]. In both cases, we present
approximate theoretical results supported by numerical
calculations.

During the reaction processes, the particles are con-
sidered to move at a constant velocity for randomly
chosen event times. The distribution 1(¢) of these event
times is assumed to follow a power law ¥(t)~¢ 7"l
Here we restrict the range of the power-law exponents to
1 <y <2. Furthermore, we assume a lattice model.

A +B —inert

An approximate description of this process is given in
terms of the linear Langevin equation for the density-
difference function g¢(r,z)= A(r,t)—B(r,t), where
A(r,t), and B(r,t) are the A- and B-particle position
dependent densities [9,16,17],

3,q(r,0)=Lq(r,t)+n(r,1) . (1)

Here [ is the operator that constitutes the Lévy process
and is defined in Fourier space (r—k) as
F{Ef(r}=—clk|"f(k). The regular diffusion limit is
recovered when ¥ =2 and correspondingly, L is the La-
placian. 7)(r,) is the noise that here denotes the particles
source  difference, so that (7(r,z))=0 and
(n(r,t)n(r',¢')) =2T8(r—r')8(t —t'), and the noise takes
the values =1. In this analysis, equal numbers of 4 and
B particles at all times are assumed. For the constant
source (CS) problem, 7s(r,?) represents the rate of add-
ing particles, while in the case of the transient, initial
condition (IC) problem, the source exists only initially
Niclr,t)=7(r,2)8(¢). We note that Eq. (1) generalizes the
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Edwards-Wilkinson growth model [14].

The density of A4 particles can be shown to obey the in-
equality A4 (t)=( A(r,t)) = (lq(r,1)|), which defines a
lower bound [1,2]. From earlier studies, one concludes
that this lower bound provides a reasonably good descrip-
tion at long times when segregation takes place [9,29].
We are thus interested in calculating the quantity
(lq(r,2)|). As was shown in Refs. [2] and [15], the mo-
ments {[g(r=0,t)]™) can be obtained from the moment
generating function (exp[¢q(r=0,¢)]). This holds also
for enhanced diffusion,

(exp[(ﬁqlc’cs(r‘_‘o, t)] ) =exp[ %¢2IIC,CS(t)] , (2)

where the average is taken over all possible realizations of
the noise. Equation (2) demonstrates that q(r=0,¢) is
Gaussian distributed, thus (lg|)=(2(q2)/m)'/2. For
simplicity, we assume that 4 (r,t) and B(r,t) are given as
number densities, length is given in units of the lattice
constant, and time in units 7 for moving a lattice con-
stant. I(t) is related to the random-walk autocorrelation
function Py(t)=P(r=0,t) of the associated diffusion
problem [23,24]. For the initial condition case,
I;c(t)=2AyPy(2t), where A, is the initial concentration
of the A particles. We therefore obtain in d dimensions,

A c(t)~C(Ay/t¥"V2 | d/2y <1, 3)

which for ¥y =2 reduces to the regular result [1-4]. For
the constant source problem, Ig(#)=2T ['Py(2t')dt’.
Starting from an empty d =1 lattice, we find

e, <777
ACS(t)~ Fl/2t1/2(1—1/‘}/) , I'\—l—l/}/<t <L? (4)
FI/ZLI/Z(Y—I) , LY <t ,

where for early times there is an increase of the density
without reactions. The intermediate regime shows an in-
crease under reactions, and finally the stationary state is
limited only by the size L of the system. Similar results
were obtained in growth models for the width of a sur-
face [14].

Segregations in 4 + B reactions are the result of densi-
ty fluctuations that give rise to A-rich and B-rich areas
[2-6]. The segregation is considered to take place on a
scale A(z). To obtain an expression for A(z), we consider
the positional correlation function, which for the initial
condition problem is related to the propagator by
(q(r,t)q(r’,t)) ~P(r—r',2t) [9,30]. From the scaling
properties of P(r,?), it follows that A;c(t)~¢!/7. Similar-
ly, for the constant source problem, one finds that
(q(r,t)q(r',t)) ~ f‘P(r—-r’,2t’)dt', indicating an in-
crease of the segregation length A g(#), which is limited
only by the size of the system.

In the simulation calculations, particles are dispersed
randomly on the lattice and each particle is assigned with
a randomly chosen event time and a direction of motion;
typically, 108—107 particles are considered. The particles
are removed from the lattice at first encounter between
unlike species. Excluded volume among like particles is
neglected. In the case of a source, particles are added
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FIG. 1. Time evolution of the density A4,c(z) in the one-
dimensional A + B —inert reaction for nearest-neighbor ran-
dom walks (NNRW) and for y-dependent, enhanced diffusion,
as indicated. Simulation results are given by full lines; the
dashed lines are the predictions according to Eq. (3).

randomly to the system with vertical annihilation and
with the restriction that the number of A4 particles is
equal to that of B particles at all times.

In Fig. 1, we show the densities 4:(¢) as a function of
time for various diffusional enhancements and for a
nearest-neighbor random walk. The numerical results
are compared with the predictions and a satisfactory
agreement is obtained. From the above derivations, the
prefactors can also be derived. They are explicitly con-
sidered in the figure presentations; details will be given
elsewhere [30]. In Fig. 2 we show the segregation length
Ajc(t) for the same set of parameters as in Fig. 1. Again,
the numerical results follow reasonably well the predicted
slopes. Figure 3 refers to the constant source problem.
The density increase and the approach to saturation are
displayed for the parameters y=1.5 and I'=10"" and
for several lengths L. The results are displayed in a scal-
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FIG. 2. Segregation length Ajc(#) as a function of time for
the same diffusion-controlled reactions considered for Fig. 1.
Full lines give the simulation results and the dashed lines indi-
cate the slopes according to A,c(¢)~t!"7.
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FIG. 3. Growth and saturation of the density Ag(t) for the
same diffusion-controlled reactions considered for Fig. 1, but
with a source. Full lines give the simulation results in the scal-
ing representation for various system sizes L, as indicated. The
dashed lines are the predictions according to Eq. (4).

ing representation to strengthen the impression of the
crossover behavior to saturation.

From the above analysis, we conclude that the
enhanced diffusion, when introduced into reactions con-
trolled by diffusion, manifests itself in a number of ways.
As expected, the reaction is accelerated so that for the
transient (IC) problem the decay is faster and the size of
the segregated areas grows faster. Moreover, while in the
simple diffusion case the critical dimension at which the
classical rate-equation approach is applicable is d,=4
[1-4], here, due to the enhancement, the critical dimen-
sion is reduced to d. =2y. Correspondingly, the segrega-
tion, which slows down the reaction, is expected to disap-
pear at dimensions lower than d =4. In the case of a con-
stant source and regular diffusion, segregation occurs in
d =1, is marginal for d =2 (critical dimension), and is ab-
sent above d.=2 [9]. Under enhancement conditions,
with 1<y <2, the reaction is again accelerated and the
marginal dimension, above which no segregation occurs,
is lowered.

A+ A—> A,— inert

We now focus on the 4 + 4 — inert and 4+ 4 — A4
reactions. These processes were shown to be very similar
to each other in their density decay and in their source
strength dependence [10,11]. The situation is somewhat
more complicated when the interparticle distances are
considered, since the corresponding distance distributions
p(r,t) do not belong to the same universality class for the
two kinds of processes. In the generalization to enhanced
diffusion, we concentrate on the 4 + A — A process in
d =1 and follow the work in Ref. [11], which relates the
decay pattern to the average interparticle distance. The
interparticle distances are governed by the probability to
move a distance 7 subject to the boundary condition of an
adsorbing origin [11]. We make use of the method of im-
ages for the derivation of an approximate form; a critical

5121
1
A[c(t) A+4 -4
107
NN-RW
/
1072 £
y=175" SN\
1078 | RSN
7=125
10—4 I 1 1 L
1 10 10° 10° 10* 10°

t

FIG. 4. Time evolution of the density A,c(¢f) in the
A + A — A reaction for NNRW and for ¥ dependent, enhanced
diffusion, as indicated. Simulation results are given by full lines.
The dashed lines are the predictions according to the powers of

Eq. (7).

discussion of the limitations of the method will be
presented elsewhere [30]. We obtain

plr,t)= fow[P(r—x,2t)—P(r+x,2t)]po(x)dx
~—29,P(r,2t) A, !, (5)

where P(r,t) is the propagator introduced for the 4 +B
case and p(r) is the initial interparticle distance distribu-
tion. Equation (5) is considered to hold at asymptotically
long times for which the typical interparticle distance in
the initial realization is small compared to actual length
scale. From the above equation, we obtain for the time
dependent density [11],

Ac(t)= -2Aofowa,P(r,2t)dr=AOPO(ZI) , (6

which leads to
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FIG. 5. Saturation concentration Acs() for the same
diffusion-controlled reactions considered in Fig. 4, but with a
source. The numerical results are given by the dots as a func-
tion of the source rate R; the dashed lines give the predicted
slopes according to Eq. (9).
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Ac(t)~CAgt ™17 (7

In the case of regular diffusion, this result coincides with
that of Refs. [4,7,11]. Furthermore, the result of Eq. (7)
can also be obtained from a Smoluchowski type of ap-
proach, which relates the density A4;-(¢) to S(¢); the
average number of new sites visited by a particle is
Ac(t)~[S(2)]7! [4]. From this point of view, enhanced
diffusion appears to explore space more efficiently than
Brownian motion, a property of importance for reactions.

From Egq. (7), we can derive in approximate effective
rate equation when a source R is included [11],

9, Acs(t)=—KAKY(t)+R . (8)

For stationary conditions, Eq. (8) yields an expression for
the dependence of the concentration on the source
strength,

Acg(0)~RVITD 1 1<y <2, 9)

We have simulated the 4 + 4 — A4 process along the
procedure introduced for the 4 + B —inert process, but
with only one particle discarded when two particles meet.
In Fig. 4, we show, in analogy to Fig. 1, the densities
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A;c(t) as a function of time for various diffusional
enhancements and also for nearest-neighbor random
walks with constants taken from Ref. [30]. One notices
that the numerical results are in satisfactory agreement
with the predictions. Figure 5 refers to the constant
source problem at saturation with the densities displayed
as functions of the source strength R. The numerical re-
sults follow reasonably the power-law prediction of Eq.
9).

In summary, we have investigated the effects of
enhanced diffusion on a family of diffusion-controlled re-
actions by incorporating Lévy walks into the diffusional
process. For all reaction schemes we have studied, the
enhancement acts as a model “‘stirrer,” which accelerates
the reactions on all scales and reduces the effects of segre-
gation relative to the Brownian motion case.
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